Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO2].

Identifieur interne : 000F16 ( Main/Exploration ); précédent : 000F15; suivant : 000F17

Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO2].

Auteurs : Bahtijor Rasulov [Estonie] ; Eero Talts [Estonie] ; Irina Bichele [Estonie] ; Ülo Niinemets [Estonie]

Source :

RBID : pubmed:29233849

Descripteurs français

English descriptors

Abstract

Isoprene is synthesized via the chloroplastic 2-C-methyl-d-erythritol 4-phosphate/1-deoxy-d-xylulose 5-phosphate pathway (MEP/DOXP), and its synthesis is directly related to photosynthesis, except under high CO2 concentration, when the rate of photosynthesis increases but isoprene emission decreases. Suppression of MEP/DOXP pathway activity by high CO2 has been explained either by limited supply of the cytosolic substrate precursor, phosphoenolpyruvate (PEP), into chloroplast as the result of enhanced activity of cytosolic PEP carboxylase or by limited supply of energetic and reductive equivalents. We tested the PEP-limitation hypotheses by feeding leaves with the PEP carboxylase competitive inhibitors malate and diethyl oxalacetate (DOA) in the strong isoprene emitter hybrid aspen (Populus tremula × Populus tremuloides). Malate feeding resulted in the inhibition of net assimilation, photosynthetic electron transport, and isoprene emission rates, but DOA feeding did not affect any of these processes except at very high application concentrations. Both malate and DOA did not alter the sensitivity of isoprene emission to high CO2 concentration. Malate inhibition of isoprene emission was associated with enhanced chloroplastic reductive status that suppressed light reactions of photosynthesis, ultimately leading to reduced isoprene substrate dimethylallyl diphosphate pool size. Additional experiments with altered oxygen concentrations in conditions of feedback-limited and non-feedback-limited photosynthesis further indicated that changes in isoprene emission rate in control and malate-inhibited leaves were associated with changes in the share of ATP and reductive equivalent supply for isoprene synthesis. The results of this study collectively indicate that malate importantly controls the chloroplast reductive status and, thereby, affects isoprene emission, but they do not support the hypothesis that cytosolic metabolite availability alters the response of isoprene emission to changes in atmospheric composition.

DOI: 10.1104/pp.17.01463
PubMed: 29233849
PubMed Central: PMC5813527


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO
<sub>2</sub>
].</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Technology, University of Tartu, Tartu 50411</wicri:regionArea>
<wicri:noRegion>Tartu 50411</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Physics, University of Tartu, 50411 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Physics, University of Tartu, 50411 Tartu</wicri:regionArea>
<wicri:noRegion>50411 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Academy of Sciences, 10130 Tallinn</wicri:regionArea>
<wicri:noRegion>10130 Tallinn</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29233849</idno>
<idno type="pmid">29233849</idno>
<idno type="doi">10.1104/pp.17.01463</idno>
<idno type="pmc">PMC5813527</idno>
<idno type="wicri:Area/Main/Corpus">001039</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001039</idno>
<idno type="wicri:Area/Main/Curation">001039</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001039</idno>
<idno type="wicri:Area/Main/Exploration">001039</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO
<sub>2</sub>
].</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Technology, University of Tartu, Tartu 50411</wicri:regionArea>
<wicri:noRegion>Tartu 50411</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Physics, University of Tartu, 50411 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Physics, University of Tartu, 50411 Tartu</wicri:regionArea>
<wicri:noRegion>50411 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Academy of Sciences, 10130 Tallinn</wicri:regionArea>
<wicri:noRegion>10130 Tallinn</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butadienes (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Chloroplasts (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Malates (pharmacology)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Oxygen (metabolism)</term>
<term>Pentanes (metabolism)</term>
<term>Phosphoenolpyruvate Carboxylase (antagonists & inhibitors)</term>
<term>Photosynthesis (drug effects)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (antagonists & inhibitors)</term>
<term>Populus (drug effects)</term>
<term>Populus (metabolism)</term>
<term>Propionates (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Butadiènes (métabolisme)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Cytosol (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Malates (pharmacologie)</term>
<term>Oxygène (métabolisme)</term>
<term>Pentanes (métabolisme)</term>
<term>Phosphoenolpyruvate carboxylase (antagonistes et inhibiteurs)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (métabolisme)</term>
<term>Propionates (pharmacologie)</term>
<term>Protéines végétales (antagonistes et inhibiteurs)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Phosphoenolpyruvate Carboxylase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Carbon Dioxide</term>
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
<term>Oxygen</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Phosphoenolpyruvate carboxylase</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Cytosol</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Butadiènes</term>
<term>Chloroplastes</term>
<term>Composés organiques du phosphore</term>
<term>Cytosol</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Hémiterpènes</term>
<term>Oxygène</term>
<term>Pentanes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Malates</term>
<term>Propionates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Malates</term>
<term>Propionates</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isoprene is synthesized via the chloroplastic 2-
<i>C</i>
-methyl-d-erythritol 4-phosphate/1-deoxy-d-xylulose 5-phosphate pathway (MEP/DOXP), and its synthesis is directly related to photosynthesis, except under high CO
<sub>2</sub>
concentration, when the rate of photosynthesis increases but isoprene emission decreases. Suppression of MEP/DOXP pathway activity by high CO
<sub>2</sub>
has been explained either by limited supply of the cytosolic substrate precursor, phospho
<i>enol</i>
pyruvate (PEP), into chloroplast as the result of enhanced activity of cytosolic PEP carboxylase or by limited supply of energetic and reductive equivalents. We tested the PEP-limitation hypotheses by feeding leaves with the PEP carboxylase competitive inhibitors malate and diethyl oxalacetate (DOA) in the strong isoprene emitter hybrid aspen (
<i>Populus tremula</i>
×
<i>Populus tremuloides</i>
). Malate feeding resulted in the inhibition of net assimilation, photosynthetic electron transport, and isoprene emission rates, but DOA feeding did not affect any of these processes except at very high application concentrations. Both malate and DOA did not alter the sensitivity of isoprene emission to high CO
<sub>2</sub>
concentration. Malate inhibition of isoprene emission was associated with enhanced chloroplastic reductive status that suppressed light reactions of photosynthesis, ultimately leading to reduced isoprene substrate dimethylallyl diphosphate pool size. Additional experiments with altered oxygen concentrations in conditions of feedback-limited and non-feedback-limited photosynthesis further indicated that changes in isoprene emission rate in control and malate-inhibited leaves were associated with changes in the share of ATP and reductive equivalent supply for isoprene synthesis. The results of this study collectively indicate that malate importantly controls the chloroplast reductive status and, thereby, affects isoprene emission, but they do not support the hypothesis that cytosolic metabolite availability alters the response of isoprene emission to changes in atmospheric composition.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29233849</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>176</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO
<sub>2</sub>
].</ArticleTitle>
<Pagination>
<MedlinePgn>1573-1586</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.17.01463</ELocationID>
<Abstract>
<AbstractText>Isoprene is synthesized via the chloroplastic 2-
<i>C</i>
-methyl-d-erythritol 4-phosphate/1-deoxy-d-xylulose 5-phosphate pathway (MEP/DOXP), and its synthesis is directly related to photosynthesis, except under high CO
<sub>2</sub>
concentration, when the rate of photosynthesis increases but isoprene emission decreases. Suppression of MEP/DOXP pathway activity by high CO
<sub>2</sub>
has been explained either by limited supply of the cytosolic substrate precursor, phospho
<i>enol</i>
pyruvate (PEP), into chloroplast as the result of enhanced activity of cytosolic PEP carboxylase or by limited supply of energetic and reductive equivalents. We tested the PEP-limitation hypotheses by feeding leaves with the PEP carboxylase competitive inhibitors malate and diethyl oxalacetate (DOA) in the strong isoprene emitter hybrid aspen (
<i>Populus tremula</i>
×
<i>Populus tremuloides</i>
). Malate feeding resulted in the inhibition of net assimilation, photosynthetic electron transport, and isoprene emission rates, but DOA feeding did not affect any of these processes except at very high application concentrations. Both malate and DOA did not alter the sensitivity of isoprene emission to high CO
<sub>2</sub>
concentration. Malate inhibition of isoprene emission was associated with enhanced chloroplastic reductive status that suppressed light reactions of photosynthesis, ultimately leading to reduced isoprene substrate dimethylallyl diphosphate pool size. Additional experiments with altered oxygen concentrations in conditions of feedback-limited and non-feedback-limited photosynthesis further indicated that changes in isoprene emission rate in control and malate-inhibited leaves were associated with changes in the share of ATP and reductive equivalent supply for isoprene synthesis. The results of this study collectively indicate that malate importantly controls the chloroplast reductive status and, thereby, affects isoprene emission, but they do not support the hypothesis that cytosolic metabolite availability alters the response of isoprene emission to changes in atmospheric composition.</AbstractText>
<CopyrightInformation>© 2018 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0001-5178-8617</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Talts</LastName>
<ForeName>Eero</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0002-8093-6444</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bichele</LastName>
<ForeName>Irina</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">0000-0002-9493-0094</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Physics, University of Tartu, 50411 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
<Identifier Source="ORCID">0000-0002-3078-2192</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia ylo.niinemets@emu.ee.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>322603</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008293">Malates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011422">Propionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D9H7KZF90H</RegistryNumber>
<NameOfSubstance UI="C506271">diethyl oxalopropionate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.31</RegistryNumber>
<NameOfSubstance UI="D010730">Phosphoenolpyruvate Carboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008293" MajorTopicYN="N">Malates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010730" MajorTopicYN="N">Phosphoenolpyruvate Carboxylase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011422" MajorTopicYN="N">Propionates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29233849</ArticleId>
<ArticleId IdType="pii">pp.17.01463</ArticleId>
<ArticleId IdType="doi">10.1104/pp.17.01463</ArticleId>
<ArticleId IdType="pmc">PMC5813527</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Photosynth Res. 1994 Oct;42(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24307470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Aug;1807(8):906-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21620796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1723-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24934668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Mar 6;580(6):1547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16480720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 May;142(1):56-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21128947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Apr;98(4):1233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1977 Jan;134(1):77-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24419583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jun 3;429(6991):579-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15175756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1990 Aug;25(2):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 1997 Mar;48 Spec No:539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1993 Mar;189(3):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(2):570-584</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28318033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 27;280(21):20672-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15792953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Feb;54(383):707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jun;168(2):532-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25926480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Jun;81(2):674-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Apr;38(4):751-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Aug;41(8):905-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 May;56(415):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1986 Mar;167(3):376-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24240307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Feb;36(2):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Aug;96(4):1385-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May;165(1):37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Dec;41(12):1105-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Nov;182(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Apr 1;435(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23262281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Jul;267(14 ):4465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):1037-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Oct;91(2):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Dec;82(4):985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2013 Feb;40(2):1385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23096088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Aug 24;476(7361):472-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Mar;1807(3):375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e32387</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1984 Mar;160(4):305-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24258579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1681-1689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Aug 1;248(2):489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3740840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Dec;172(4):2275-2285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27770061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 14;275(28):20996-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Jul;67(14 ):4067-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26585224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Jan;41(1):10-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10750703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Feb;92(2):456-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1984 Jun;161(4):308-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):761-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18753284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):541-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1993 Jan;35(1):5-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1994 Nov;42(2):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):724-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2000;64(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Dec;73(4):978-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Apr;62(7):2381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2014 Aug;31(8):1043-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24921065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 16;421(6920):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529640</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<country name="Estonie">
<noRegion>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</noRegion>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29233849
   |texte=   Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO2].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29233849" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020